If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+14x=0
a = 15; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·15·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*15}=\frac{-28}{30} =-14/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*15}=\frac{0}{30} =0 $
| 10+3w=19 | | x=5=-3x+25 | | 2x+21=-3(2x+1) | | x-(4x-7)=5x(-x+21) | | -10m+9=-1-9m | | -8x=64 | | 2x+21=3(2x+1) | | 2x+4=9 | | -8(1+4p)=-7p-33 | | y/6-11=11 | | 7(x-2)=2x-24 | | -9(x+3)+4x+7=5x+9 | | 250+20h=350 | | 10r=9r+6 | | 2x3-6=2(3+3) | | -2x-2=x+24 | | 2×2+10x=48 | | 2b=-8b-10 | | 2=-8n | | 2(5x+5)=26+6x | | 5x+8=-4+2X | | -7x-5=-3x+23 | | 1/1-2x-10/3x=20-x/2x | | 2(3x+8)=5x | | 5=3.5x=3x | | 54=-9(x=5) | | 5=3.5x=3× | | 73=−6(k−7)+6(k+5)=13 | | 4n-3=3n+2 | | 3x–10=5x-7–x | | 1-2x-10/3x=20-x/2x | | 5(3-2r)=5r+15 |